High Energy Systems for Transforming CO₂ to Valuable Products

DOE Contract No. DE-FE0029787

Osman M. Akpolat, Howard Meyer Gas Technology Institute (GTI) Rick Galloway IBA Industrial Theodore Dibble SUNY-ESF Arunabha Basu Consultant

NETL CO₂ Capture Technology Project Review Meeting, Pittsburgh, PA, August 21-25, 2017

High Energy Systems for Transforming CO₂ to Valuable Products

- Funding: Federal: \$799,997, Cost-share: \$206,000, Total: \$1,005,997
- Objective: Develop a direct electron beam (E-Beam) synthesis (DEBS) process to produce valuable chemicals such as acetic acid, methanol, and carbon monoxide using carbon dioxide (CO₂) captured from a coal-fired power plant and methane (natural gas).

Project Description – Performance Dates

- Develop the DEBS process that uses high-energy e-beam to break chemical bonds.
- Produce valuable chemicals, such as acetic acid, methanol, and carbon monoxide, at relatively low severity (pressure near one atmosphere and temperatures <150°C) from near-pure CO₂ captured from a pulverized coal-fired power plant and methane, imported as natural gas.
- Creating such valuable products will offset the cost of carbon capture and storage.

Period of Performance	Budget Period 1	Budget Period 2
05/17-04/19	05/17-01/18	02/18-04/19

DEBS Process Flow Diagram

DEBS: non-equilibrium process that breaks bonds directly unlike conventional chemistry that requires heating the entire molecule

This project will expand on the concept of DEBS to:

- Develop a commercially viable process
- Minimize E-Beam energy requirements
- Maximize CO₂ conversion
- Selectively control the yield of more valuable products using catalysts

DEBS Integration in an IGCC Plant

- A kinetic model will be developed by SUNY based on the collected data and will be used to predict the chemical performance of the DEBS process.
- A conceptual design for coupling the DEBS process to a coal-fired power plant will be developed.

Valuable Chemical Products

Advantages Over Traditional Processes

- Current technology for the commercial production of acetic acid, methanol, and carbon monoxide requires:
 - High temperatures and pressures
 - Expensive catalysts in multiple process steps
 - High capital and operating costs
- The DEBS process uses high-energy electron beams to break chemical bonds, allowing production of the desired chemicals at near-ambient pressure and temperatures.
- Successfully combining DEBS technology with CO₂ captured from coal-fired power plant flue gas provides a low-cost, energy-efficient process to produce valuable chemicals and reduce emissions.

Electron Beam Deposition into Gas

Instructables.com DIY Electron Accelerator: a Cathode Ray Tube in a Wine Bottle

Industrial E-Beam Accelerator

Main application : E-beam Crosslinking

Industrial E-Beam Processes

Electron Beam Primer

V = Voltage (eV) I = Current (amp) V x I = Power (watt)

Current = Charge/Time

1 amp = 1 coulomb / 1 sec

Charge of an electron = 1.602×10^{-19} coulombs 1 coulomb = 6.25×10^{18} electrons

1eV = Kinetic energy of an electron accelerated to 1 volt

 $1 \text{ amp} = 6.25 \text{ x} 10^{18} \text{ electrons} / \text{sec}$

1 eV x 1 amp= 1 watt = 1 J/sec 1 eV = 1.602 x 10⁻¹⁹ J

Electron Beam Primer

500keV & 15mA E-Beam:

Each electron will have:

8 x 10⁻¹⁴ J of energy

E-Beam will have:

9.3633 x 10¹⁶ electrons per second

E-Beam power = 7500 watt or 7500 J/sec

Each electron has the potential to achieve ~100,000 interactions

V = Voltage (eV) I = Current (amp) V x I = Power (watt)

g

Electron Beam Primer

Bond Dissociation Energies

Bond	ΔHf ₂₉₈ (kJ/mol)
C-C	607
C-H	337.2
C-0	1076.5
C=O	749
C≡O	1075

C-H bond energy ~5eV

One 500keV electron can break approximately 100,000 x (5 eV) bonds

Dehydrogenation of CH_x

	ΔH (kJ/mol)
$CH_4 \rightarrow CH_3 \cdot + H \cdot$	405
$\mathrm{CH}_{3}\cdot \rightarrow \mathrm{CH}_{2}\cdot + \mathrm{H}\cdot$	439
$CH_2 \cdot \rightarrow CH \cdot + H \cdot$	488
$CH \cdot \rightarrow C + H \cdot$	685
$CH_4 \rightarrow CH_2 + 2H \cdot$	808
$CH_4 \rightarrow C + 4H \cdot$	1266
$CH_2 \rightarrow C + 2H \rightarrow$	857

Industrial Accelerator Design (linear)

Typical Numbers in range of interest; 450 to 1000 keV 25 to 250 mA 11 - 100 kW Efficiency: 45 – 60%

Voltage – Controls how FAR the electrons will go Current - Controls how MANY electrons will be

Electron Beam Deposition

Monte Carlo Simulation

Monte Carlo simulations are used to model the probability of different outcomes in a process that cannot easily be predicted due to the intervention of random variables.

- The electron trajectories are simulated by using a Monte Carlo method.
- Each electron enters the reactor with a given energy, and its trajectory is followed until it comes to rest or exits the reactor.
- To simulate a beam, the process is repeated for a large number of electrons.
- Secondary electrons are generated and tracked within the "fast secondary" model.

Estimation of Electron Paths in Flue Gas Treatment

Initial electrons energy: 800 keV Energy cut-off: 1 keV

Electron Beam Flue Gas Treatment

"Due to very high concentrations of ions, radicals, ion-radicals and other reactive particles in E-Beam plasma, chemical reactions take place at extremely high rates of ~0.01-10 milliseconds"

Ref. : Vinokurov et al., "Plasma-Chemical Processing of Natural Gas", Chem & Tech. of Fuels and Oils, Vol. 41, No. 2, 2005

Ref. : Kim et al., "Electron-beam Flue-gas Treatment Plant for Thermal Power Station "Sviloza" AD in Bulgaria", J. of the Korean Physical Society, Vol. 59, No. 6, December 2011

Schematic diagram of the EBFGT technology

Target Range of E-Beam Dose and Residence Time

Ref. : "H₂ Production from Methane in E-Beam Plasma" ; Sharafutdinov et al., Technical Physics Letter, Vol. 31, 2005 For E-Beam based H_2 production from methane, literature data indicates average gas residence time of about 2 milliseconds.

Experimental data in literature indicate ~ 4-7 kJ/gm methane (as electrical energy) for E-Beam based pure methane conversion to H_2 , C_2 - C_4 gases & C_5 + liquid fuels

Fig. 1. Energy consumption vs. degree of conversion of methane using different methods

of activation: •, \Box , \triangle : 100% CH₄; °, \blacktriangle : mixture (1:1) of CH₄ and CO₂.

Ref. : Vinokurov et al., Chemistry & Technology of Fuels and Oils, V-41, #2, 2005

Experimental Design & Key Experimental Parameters

Schematic drawing of the DEBS reactor

- E-Beam dose, (kJ/gm)
- Gas residence time in beam and off beam (ms)
- E-Beam energy : 300-500 keV
- Use of a promoter, such as, carbon monoxide
- Use of catalyst(s)

Project Task Plan

BP 1:

- Design and construct a DEBS reactor and a testing unit
- Shakedown DEBS testing unit and calibrate analytical diagnostic equipment
- Transport the testing unit to IBA

BP2:

- Run parametric testing
- Develop a kinetic model based on the collected data
- Perform life cycle analysis, technology gap analysis, and economic analysis

Project Scope and Timeline

Task	Description	Duration
1	Project Management and Planning	5/17-4/19
2	Design and Construction of Experimental System	5/17-9/17
3	Start-Up and System Checks at GTI	10/17-11/17
4	System Commissioning at IBA	12/17-1/18
7.1	Develop Preliminary Kinetic Model	6/17-1/18
BP2		
5	Conduct Parametric Testing	2/18-4/18
6	Conduct Parametric Testing with Catalyst	7/18-10/18
7.2	Develop Kinetic Model	9/18-4/19
8	Data Analysis, Life Cycle Analysis and Economics	10/18-4/19

Risk Management and Mitigation

Description of Risk	Prob.	Impact	Risk Management Mitigation and Response Strategies
Technical Risks:			
Reactor size too small for practical use in testing unit	Low	Mod.	Reduce E-Beam power and increase reactor size
Recombination reactions occur too quickly	Low	Mod.	 Decrease residence time in reactor Include a "recombination chamber" to allow reactions to take place. Change location of catalyst to accommodate recombination reactions
Reactions produce unidentified products	Mod.	Low	 Increase analytical diagnostic capability to identify reaction products Change catalyst to work with newly identified reaction products
Not high enough conversion	Low	Mod.	 Increase E-Beam accelerator power Introduce recycle to the process

Milestones and Success Criteria

Budget Period	Task Number	Milestone Description	Planned Completion
1	1	Update Project Management Plan	6/27/17
1	1	Kickoff Meeting	7/13/17
1	2	Complete Final Design	9/1/17
1	1	Submit Continuation Application	11/1/17
1	7	Develop Preliminary Kinetic Model	12/31/17

Decision Point	Date	Success Criteria
Go/no-Go decision points	01/31/2018	 Successful commissioning of a viable reactor system and testing unit: Verify gas flow meter control by measuring the vent using a dry test meter Operate chiller for condenser to achieve less than -20°C in the condenser Verify detection limit of acetic acid and methane using RGA at 100ppmv Identify at least two catalysts to control the recombination and increase the yields for more valuable products

Progress and Current Status

Technology Challenge: Delivering maximum e-beam dose while maintaining very short residence time

- Prepared 3 different reactor geometries
- IBA currently running Monte Carlo calculations
- Preparing reactor design to maximize e-beam utilization inside the reactor

Technology Challenge: Determining which of the many compounds formed are more probable

- SUNY is setting up the model reactions
- Thermodynamic properties for over 300 compounds (ions and radicals) are listed
- Preparing database containing reactions of these compounds

Experimental Equipment

Plans for future testing/development

- Reactor and testing skid fabrication
- Analytical equipment setup
- BP2 Scope
 - Testing at IBA
 - Kinetic model verification
 - Techno-economic analysis

- Develop a commercially viable non-equilibrium process that breaks bonds directly unlike conventional chemistry that requires heating the entire molecule
- Each electron has the potential to achieve ~100,000 interactions
- Extremely high reaction rates (~10 milliseconds)
- Monte Carlo calculations to maximize e-beam utilization inside the reactor
- Thermodynamic properties database of reactions for over 300 compounds (ions and radicals)

BP1: Reactor fabrication and preliminary model setup

BP2: Testing and technoeconomic analysis

Acknowledgements

Financial Support

DOE NETL
 Bruce Lani
 Lynn Brickett

gt